Sequential Monte Carlo for Bayesian Computation
نویسندگان
چکیده
Sequential Monte Carlo (SMC) methods are a class of importance sampling and resampling techniques designed to simulate from a sequence of probability distributions. These approaches have become very popular over the last few years to solve sequential Bayesian inference problems (e.g. Doucet et al. 2001). However, in comparison to Markov chain Monte Carlo (MCMC), the application of SMC remains limited when, in fact, such methods are also appropriate in such contexts (e.g. Chopin (2002); Del Moral et al. (2006)). In this paper, we present a simple unifying framework which allows us to extend both the SMC methodology and its range of applications. Additionally, reinterpreting SMC algorithms as an approximation of nonlinear MCMC kernels, we present alternative SMC and iterative self-interacting approximation (Del Moral and Miclo 2004; 2006) schemes. We demonstrate the performance of the SMC methodology on static and sequential Bayesian inference problems.
منابع مشابه
Sequential Monte Carlo with Adaptive Weights for Approximate Bayesian Computation
Methods of Approximate Bayesian computation (ABC) are increasingly used for analysis of complex models. A major challenge for ABC is over-coming the often inherent problem of high rejection rates in the accept/reject methods based on prior:predictive sampling. A number of recent developments aim to address this with extensions based on sequential Monte Carlo (SMC) strategies. We build on this h...
متن کاملOn sequential Monte Carlo, partial rejection control and approximate Bayesian computation
We present a sequential Monte Carlo sampler variant of the partial rejection control algorithm introduced by Liu (2001), termed SMC sampler PRC, and show that this variant can be considered under the same framework of the sequential Monte Carlo sampler of Del Moral et al. (2006). We make connections with existing algorithms and theoretical results, and extend some theoretical results to the SMC...
متن کاملApproximate Bayesian Computation for Smoothing
We consider a method for approximate inference in hidden Markov models (HMMs). The method circumvents the need to evaluate conditional densities of observations given the hidden states. It may be considered an instance of Approximate Bayesian Computation (ABC) and it involves the introduction of auxiliary variables valued in the same space as the observations. The quality of the approximation m...
متن کاملEmbarrassingly parallel sequential Markov-chain Monte Carlo for large sets of time series
Bayesian computation crucially relies on Markov chain Monte Carlo (MCMC) algorithms. In the case of massive data sets, running the Metropolis-Hastings sampler to draw from the posterior distribution becomes prohibitive due to the large number of likelihood terms that need to be calculated at each iteration. In order to perform Bayesian inference for a large set of time series, we consider an al...
متن کاملAn adaptive sequential Monte Carlo method for approximate Bayesian computation
Approximate Bayesian computation (ABC) is a popular approach to address inference problems where the likelihood function is intractable, or expensive to calculate. To improve over Markov chain Monte Carlo (MCMC) implementations of ABC, the use of sequential Monte Carlo (SMC) methods has recently been suggested. Effective SMC algorithms that are currently available for ABC have a computational c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006